07-05-88

08:R241 0N COMMUNICATIONS

NASA-CR-201452

P02

FAST INTERRUPT PLATFORM FOR EXTENDED DOS

T. W. Duryea
Rocketdyne Divigion, Rockwell Intemational Corp.
Canoga Park CA

ABSTRACT

Extended DOS offers the unique cambination of a
simple operating system which allows direct access to
the interrupt tables, 32 bit protected mode access 10 a
4096 MByte sddress space, and the use of industry
standard C compilers. The drawback 18 that fast
interrupt handling requires both 32 bit and 16 bit
versions of each real-time process interrupt handler to
avoid mode switches on the interrupts. A set of tools
has been developed which automates the process of
transforming the output of a standard 32 bit C
compiler o 16 bit interrupt code which directly
handles the real mode interrupts, The entire process
compiles one set of source code via a make file, which
boosts productivity by making the management of the
compile-link cycle very simplc. The software
components are in the form of classes written mostly
in C, A foreground process writien as a conventional
application which can use the standard C libraries can
communicate with the background real-time classes
via a message passing mechanism. The platform thus
enables the integraton of high performance real-time
processing into a conventional application framework.

INTRODUCTION

Various operating systzms are avallable to facllitate
the programming of real-time systems on standard
IBM PC compatible hardware and other hardware.
Most of these options suffer the drawback of 16 bit
operation and reliance on specialized development
tools (i.e., compilers and linkers). The methodology
presented here originated from a neophyte's need to
write a fast control system for a speclalized imaging
system which images Hydrogen leaks near a rocket
engine. It bas become apparent that the components
already written are usable in a variety of applications,
Two examples of situations where the software could
be quickly adapted are an infrared scene generator
which requires fast control of an optical scanner to
generate scene objects and an imaging system to
quickly inspect metallic surfaces for subte defects
such as scratches, The software is also embeddable, as
Phbar Lap bas available an embedded version the
386iD0S. The trend in acrospace hardware in fact

Copyright ® American lastinits of Acvonautics sed
Asgonautlcs, Iac. 1998, All righu reservad. 1

seems to be towards supplying embedded software
modules on various hardware assemblies.

Work prior to the present developments was on a 16
bit platform. After receiving advice from several
sources concerning the necessity of using expensive,
specialized, or unobtainable hardware and software
platforms to host real-time development work, it was
decided that the standard 286 PC computer offered the
advantages of availability, simplicity, and standard
software development tools which were cheap and
which worked well, A control system was written
using Microsoft Quick Assembier. The control system
worked well, aithough the software was somewhat
cumbersome, The architecture was a simple Interrupt
driven background process for both a millisecond
tmer interrupt and a serial port interrupt. The bulk of
the program was a forcground process which was
wrilten as an ordinary application, and which
communicated with the background processes via
message passing functions called in a loop in the sbell
input routine which serviced the keyboard.

Scveral observations were made in the course of the 16
bit work. The use of standard compilers is desirable
due to commercial pressures to produce a reliable
product for mass consumption. The use of standard
hardware is desirable in times of reduced budgets and
of the necessity of rapld response to new challenges.
The use of stub interrupt handlers is useful as these
handlers can call bandlers written in C as ordinary
functions, which allows most of the difficult work to
be written in C, The avoidance of special C keywords
(such as interrupt) should be avoided, as bugs and lack
of-standardization across comptilers will become a
problem. The use of a MAKE file is important; lack of
ability to recompile a fresh working set of code leads
to serious bug problems and is a drain on productivity.
Finally, the existence of some sort of coherent
framework for the programming effort boosts
productivity, eliminates many serious and time-
consuming bugs, and most importantly offers
modularity and reusabllity.

The above changes were implemented when the
software was converted to 32 bit 386 operation.
Previous familiarity with the Phar Lap 386/DOS

American Institute of Acronautics and Astronautics

JAN 5 95 11:48

8185864485 PAGE.QQ2



s A e
O -n==3F
P A

1205240 F2CN CCMMUNICATIONS

extender productl suggested that it would be a good
platform for 32 bit real-time development. The product
is straightforward and reliable, and has a simple and
fast interrupt structure which is well documented, The
Phar Lap extender does not run the real mode portion
of a program in virtual 86 mode, which avoids timing
problems with things such as indirect interrupt
vectoring. If an application hooks a real mode or
protected mode interrupt, it gains control dirscdy
through an extender stub handler which changes the
ring level if necessary. Thus one can write real-time 32
bit code almost as easily as one would for 16 bit usage,
except for the problem of mode switches.

SOFTWARE ARCHITECTURE

High performance real-time software under extended
DOS requires a minimal number of mode switches
during process interrupts, especially when fast
(millisecond or less) Interrupt rates are Involved. The
usual method for avoiding mode switches 1s to write
separate real mode and protected mode handlers fora
softwars component. This appraach generates efficlent
code but bas the drawback that two versions of the
same algorithm must be kept congrusnt. Also, it is
difficult to write the real mode code In any language
except assembly language. These constraints make it
difficult develop real mode components in a
productive manner and greatly increase the risk of
bugs which are difficult to isolate.

The softwars architecture detailed here is driven by the
necessities of writing high performance real-time code
in C, of compiling through a make file, of being able
to make changes simply without pencrating bugs, of
having 32 bit access to memory, and of component
reusability. The two critical ingredients of the
architecture are the ability to compile a .C source file
to run in real mode and the adoption of what is
essentially an object criented structure 1o the
COMpOonents.

Thus far the compilers used in this work are the
MetaWare HighC compiler and the Phar Lap 336ASM
assembler. The MetaWare compiler has an optlon
which generates assembly source files, The files will
not directly assemble without problems, as comrect

_assembly of the files is currently not supported. Also,
the instructions in the files are not necessarily the
same object code instructions generated by the
compiler. Nonetheless several non-trivial classes were
writien using these assembly source files.

P03

It was noticed upon early examination of the
MetaWare assembly files that the instruction
sequences contained within would assemble real mode
code if a number of subtle changes were made to the
files. The principal change is to change the segment
declaration lines (containing the SEGMENT keyword)
to change the segment names and convert the
segments to USE16 'CODE' attributes. All standard 32
bit 80386 Instructions using any addressing mode will
assemble for USE16 segment operation. The only
constraint is that any dereferenced address offset
which exceeds 64K will generate a processor
exception ln real mode.

Fig. I portrays the execution flow of a real-time
interrupt under the new architecture. One real mode
stub handler and one protected mode stub bandler
{written in assembler) are installed to intercept all real-
time hardware interrupts at several different entry
points. Because the Phar Lap handler provides a fresh
stack, the stub handlers are reentrant, There are no
mode switches in the interrupt generation process. The
invoked stub handler in tum calls the class interrupt
handler implied by the interrupt vector. Bach real
mode and protected mode class handler palr is derived
from one .C source file, The handlers are ordinary C
functions which use no special keywords at all (which
avoids the problems associated with obscure
keywords). The process of generating two handlers
from one source file is termed "dualing”, and the
handlers are referred to as dual mode functions.

A hardware interrupt either occurs while the processor
is in real mode or protected mode. The static data
addressed by a class handler must be addressable in
either mode; it is thus necessary to have all static data
used by the handlers resident in conventional memory
(i.c., below 1 MB), Both of the dual mode handlers
should execute precisely the same algorithm on
precisely the same data, Fig. 1 shows that the class
static data is arranged as instance slots grouped into
class slots which are bundled with the real-mode code.
Fig. 2 provides more detail on the conventional
memory arrangement. The simplest way to get this
arrangement loaded into conventional memory is to
use a simple assembly source file to force the segment
ordering, (which gets the whole fig. 2 arrangement
into the bottom of the load image) and to use ths -
REALBREAK extender switch 1o ensure that the
necessary portion gets loaded below 1 MB.

Fig. 3 displays the parts of a real-time class. Typically
a trivial assembly source file declares space for N
instances to a segment named _REALDATA of class

American Institute of Aeronautics and Astronautics

8185864465 PAGE.BB3



JAN 5

1-02-15 08:524 FCN COMMUNICATIONS

'CODE". A dual mode .C source file contains the
handler source code and code for specialized dual
mode functions, These functions may be called by the
handler and by other real-time software classes. Dual
mode functions which operate on static data must bave
some kind of semaphored access to the data, as the
functions must not operate on static data when a
bandler already operating on the data is itself
interrupted, The class handlers are written without
regards to possible interruption {except where timing
problems are a concern), but some dual mode
functions can possibly return with a
Data_Access_Denied return code. The calling process
must be able to work around this.

The protected mode class functions (i.e., the
foreground functions) in fig. 3 are conventional C
functions which present the high level class interface
to the conventional part of the applcation, called the
foreground process. The real-time classes form the part
of the application called the background processes.
The division of the application into these two parts
makes the majority of the work no more difficult than
writing an ordinary C program. Thus the kind of
reusability associated with object orlented
programming i3 imparted to the real-time components,
Development of the real-time classes is simplified due
10 the fact that one is writing ordinary C code.

Most non-trivial applications require some sort of
comununication between the foreground and
background on a regular basis. Two examples are the
need to drain and process serial port input and the need
to transfer interrupt trace debugging data from a small
conventional memory buffer to a much larger extended
memory trace buffer. A simple way to ensure this
communication is to execute a servicing function in a
keyboard input loop, which allows a shell-driven user
input mode. Any long foreground execution path
should call the same function at various times. Another

- possibility is to hook the timer tick to always gain
conirol in protected mode and call the servicing
function.

IMPLEMENTATION DETAILS

The following details relate to the software
architecture implementation. One important
consideration is that the procedure ysed to generate
real mode code from the .C source file is general in the
sense that only one algorithm s needed to convert all
files: i.c., only one single-pass editor need be writien.
The details regard only the use of the MetaWare
compiler,

PO¢

The real-time stub handlers are part of a special single-
instance class named IS (which mimics a C++
PUBLIC base class). The role of IS is to provide a
standard interface for installation and usage of the
real-time classes. When a real-time class instance
constructs, it provides its inherited IS base class the
interrupt vector, the addresses of both dual handlers,
and a pointer to its conventicnal memory static data.
The IS class stores both real mode and protected mode
far addresses of these quantities in tables for quick
access by the stub handlers. The only class bandler
access o static data is through itg structure pointer,

The current constraint on conventional memory length
is that all of the code be less than 64K in length, If far
data pointers in the C source are used, the IS stack
pool may be up to 64K in lengih and any class instance
may be up to 64K in length. If near data pointers are
used, the stack pool and all class instance conventional
static data must fit in less than 64K. Regarding far
pointer usage, MetaWare and Watcom compilers
support the far keyword, while Microsoft and Borland
do not. Also, use of far pointers in C code may result
in many segment loading instructions, which slow
down execution considerably. (Class bandlers
rewritten in assembly language need only set the ES
register once per pass and use segment overrides.) In
genceral, a good strategy is 1o make the conventional
memory usage small and use near pointers.

The role of the stub handlers is mainly to secure a
stack from a stack pool, to call the appropriate class
handler, and to send the EQOI signal and retum. The
stack pool is not necessary (the Phar Lap handler uses
a fresh stack), but facilitates debugging, as the stacks
exist in the application dala segment. The stub bandler
pushes a far pointer to the correct static data instance
and calls the bandler function. Several quantities such
as the interrupted address are pushed before the statle
data pointer, which allows ready access of debugging
parameters to the c¢lass handlers.

If the called class bandler uses near pointers, the data
addressing is successful, as the real mode DS reglster
and SS register both point at or just below the
beginning of the stack pool portion. The real mode
static data potnter offset is fixed up to this value. If far
pointers are used, the real mode DS points just below
the correct ingtance, allowing 64K per instance, Itis
important when calling the real mode class handler
that two padding bytes be pushed just before the call
ingtryction, to maintain the proper stack frame across
the call.

American Institute of Acronautics and Astronautics

'35 11:42

8185864465 PAGE.BRA4



JAN

Ao
f _UC-v;
Ve Md o d s

09:524N FRCY CCMMUNICATIONS

To geuerate the dualed real mode 32 bit object code
tbe following procedure works: first the C compiler is
run to generate the assembly output file, which should
have a different root file name. The file is then
processed by a single pass editor which regencrates an
altered fils which then is assembled by the assembler.
The make file ensures that any changes to the .C
source file generates new coples of both object code
files.

The single pass editor was wriiten to read in a text file
to a heap. A directory contains the offsets of cach text
line, which makes the editing process straightforward.

The following set of commands has been found to
convert MetaWare HighC .S assembly output files
successfully. The following lines should be included
into the dual mode files:

#define Glue(x, y) x ## y
#ifndef Realmods

#define Dual(x) x

#else

#define Dual(x) Glue(__, x)
#endif

Thus a function int func(int arg) declared as int
Dual(func)(int arg) will obtain the name __func when
the switck -DRealmode is used on the compilation.
This prevents name recurrences. The function should
e called in the form Dual(func)(value);.

The exact set of nceded editor commands changes
from release to release:

1: Change the "TITLE name.c” Uine to "TITLE
rmame.¢" to not confuse the librarlan.

2. Replace the "_TEXT segment” line with
» REALTEXT SEGMENT PUBLIC DWORD
USE16 'CODE" to change the segment
declaration.

3; Change the *_TEXT ends” line to *_REALTEXT
ENDS",

4 Delete the "CONST segment” and "CONST ends”
lines {thete should be no literal strings in the
source file).

5. Insert the line ".386" near the file beginning.

6 Delete the lines "extrn _mwargstack”, “extm
_mwargstack:NEAR", "extrn _mwgoc”, and
*extrn _mwgoc:NEAR" to prevent warnings.

7. Replace the line "CGROUP GROUP _TEXT"
with "CGROUP GROUP _REALTEXT"

4

P05

8: Replace the line "DGROUP GROUP * with
"DGROUP GROUP _DATA"

9: Move lines containing the word “cxtm" such that
they follow the next line which contains the word
"public”,

10: For all lines containing the word "call*, precede
the line by "sub esp, 2", and follow it by "add esp,
2*. This aligns the stack frame for calls to dual
mode functions.

11: Replace the lines "leave” with the set of lines
"mov esp, ebp” and "pop ebp”. This prevents the
16 bit form of leave from being assembled.

12: Delete the lines "mov eax,ds”.

13: Replace the lines “mov es,cax” with the pair of
lines "mov ax, ds", "mov ¢s, ax" to facilitate far
pointer usage.

14: Replace the lines “les ecx,dword ptr 8{ebp]” with
“les ecx, FWORD PTR [ebp](8]" to facilitate far
pointer usage.

The above dualing procedure was used to write several
real-time classes, most notably a 8250-16550 serial
port interface which could b called from within other
real-time classes. The required set of editor commands
tequired little maintenance as the amount of bigh level
source code increased, which was the hoped-for result
when the work began. Some additions need to be made
to facilitate things such as argument passing when
dualed functions are called. The only assembler
instructions in MetaWare which never worked
involved bit fields. The changes needed above do not
correct errors in the outputted asscmbler instructioas,
but in fact ensure that 32 bit instructions are not
wmisinterpreted within a USEL6 segment. Obviously an
assembly output file which is guarantzed to assemble
correct object code (identical to .OBJ output) and
output Instructions which specificaily refer 0 32 bit
operations would be ideal.

A number of simple considerations must be kept in
mind as dual mode .C files are being written, Stack
checking must be off. A bandler should have a static
data structure pointer as its sole argument, unless
debugging arguments are to be added. No standard
library functions can be called from dual mode
functions (all called functions must be of dual mode
form). Things such as function pointers must be
bandled carefully. The volatile keyword should be
used on the static data structure, but this alone will not
prevent instruction overhang which causes real-time
bugs. For example, suppose a one-bit flag is to be
changed in a flags word. High level compilers
typically copy the word 1o a register, alter the register,
then replace the word, If a flag changing interrupt

American Institute of Aeronautics and Astronautics

5 '95 11:43

8185864465 PAGE.BBS



J.

JAN

AT_nn

SO

09:524% FxCM CONMUNICATIONS

occurs during this sequence, the word changed by the
interrupt will be overwritten by the interrupted
process. The volatile keyword will reduce the
instruction overhang, but will not eliminate it, These
bugs are prevented by knowing the behavior of the
compiler and using short (assembly) functions with
names such as cl_iQ and s¢_iQ to control the interrupt
flag when pecessary. Good design technique can
avoid many situations where overbang could be a
problem.

The fastest way to develop a new class Is to start with
a trivial set of working code and test a minimal set of
interacting classes as incremental changes aré made to
the new class. Ironically, a slow machine such as a 386
helps out, as the processor is more casily overwhelmed
than a faster processor. Reliability of the class is
enhanced by driving the test program at a rate which
gencrates overhead problems, The class may be made
fault tolerant to many of the errors which occur. Such
behavior enhances the reliability of the class when it
interacts with otber classes later on. Tho ability to
store large amounts of trace debugging information
and to have access to interrupt stacks, interrupted
addresses, and timing information ¢an help pinpoint
subtle class interaction bugs. All interrupt trace
debugging features should be triggered on a single
#define to allow the complets removal of the feature.

The implementation of this compilation technlque
using other compilers should be straightforward,
although the task has yet to be performed. The
assembly output files of the compiler must be
examined, and a new set of editor commands which
converge to one set of universal commands must be
identified. Most standard 32 bit compilers don't
support the far keyword or the int386 function calls,
Most 32 bit compilers and debuggers which run on the
Phar Lap extender are Windows NT products or

P06

WIN32S products, which cause problems with the
obsolescent REALBREAK switch, A lack of reliance
on this switch is therefore desirable.

CONCLUSIONS

The methodology described here has been
implemented and is known to work. The tasks of
converting to other major C compilers and of avoiding
REALBREAK have not been implemented, but are
expected 1o be stralghtforward. The actual speed or
maximum Interrupt rate of an application depend on
the nature and complexity of the processes involved.
This architecture has the property that the overhead is
minimized In a system which provides a uniform
framework for installing real-time components. Thus
as the x86 processor family advances programs written
in this platform gain the same speed increases.

Several classes have been written besides the IS
interface class. They include a real-time serial port
class and a trace buffer debugging class which can
store large amounts of interrupt trace data. A simple
scheduler class to administrate several control system
algorithma is under development. The classes are
easily reused in other applications.

ACKNOWLEDGMENT

The work reported here was supported by NASA
Marshall Space Flight Center (contract NAS8-40000).

REFERENCE

Baker, M. Steven, and Schulman, Andrew, "80386-
based Protected Mode DOS Extenders®, in Extanding
DQS (Ray Duncan, ed.), Addison-Wesley Publishing
Company, Inc,, Reading, Mass, p. 193, 1990.

5

American Iostitute of Aeronautics and Astronautics

S5 *'95 11:43

8185864465

PAGE . BG6



0:-GE-55 03:82

&M FRCY COMMUNICATIONS P07

FIG. 1: HARDWARE INTERRUPT ARCHITECTURE

HARDWARE INTERRUPT
(VARIOUS VECTORS)

L PHAR LAPHANDLER |
" REAL MODE PROTECTED MODE

STUB HANDLER \/ STUB HANDLER

M
[cLass #0] == [CLASS #N]| [cLass#o] ser [cLass #N |
DUALED REAL MOD -"'"/PH MODE
CLASS HANDLERS ASS HANDLERS

e USED BY FOREGROUND

" CODE CLASS #0 'CLASS &N EXTENDED MEMORY
INSTANGES INSTANCES

CONVENTIONAL MEMORY

| IRET TO PHAR LAP HANDLER)

FIG. 2: CONVENTIONAL MEMORY MAP

A

(e2]
r
~

3G =L
w <
shs B2 | |3
m
0 |Z258| 8Z | axa | &5
o |d5Zl T wo.
D |KV«] wpuw N
B d o <0 <0
n = JO i Q
OE o=
i _
CS: 0000 (PROTECTED) -REALBR‘EAK LABEL
4 w 8
. W .
5l g | Z 23
g1 8 =OZ =0Z
“EQ NwES
) X ZZE | wua 2B
. O olYx e
2 =20 206
O u') m% nZo
et p a8 ke,
@ %) << 133
o 3
Ty < 64K (IF NEAR POINTERS USED)™

DS:0000 (REAL MODE)
6

American Tnstitute of Aeronautics and Astronautics

JAN S 85 11:44 8185864465 PAGE.BQY



0:-05-95 09:52AM FRCM CCMMUNICATIONS P08

FIG. 3: REAL-TIME CLASS STRUCTURE

SAME..C FILE
HANDLER DUAL MODE FOREGROCUND
FUNCTIONS CLASS FUNCTION

PROTECTED REAL MODE

\/ AND TRANSFERAL
——'— _l—
CLASS STATIC DATA CLASS STATIC DATA
INSTANCES INSTANCES

(CONVENTIONAL PORTION) (EXTENDED PORTION)

6

American [nstitute of Aeronautics and Astronautics

JAN S '85 11:44 8185864465 PAGE.Q48



